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ABSTRACT An assessment of uncertainties in predictions was performed for the WEPP model 
by identihing the contribution ofparameter variance and model bias on the Mean Square Error 
of three model response variables. A Monte Carlo simulation scheme with correLated variable 
generation was assembled into WEPP to produce a large number of model responses to be com- 
pared to observed a h a  of a semi-arid rangeland watershed. The behavior of errors andprediction 
intervals illustrate the model: ability to simulate the system. This analysis answered relevant 
questions related to model uncertainty and to identzfj noisy components in the model. 
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ajor advances in soil erosion predic- M tion technology have been obtained 
in the implementation of process-based 
models that account for the spatial and tem- 
poral variability of watersheds when estimat- 
ing the effects of land-use practices on soil 
erosion. This is the case of the USDA Water 
Erosion Prediction Project (WEPP) model, 
a distributed parameter, process-based, con- 
tinuous simulation model that simulates 
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erosion and sedimentation processes in 
cropland and rangeland watersheds. WEPP 
is based on the modern concepts of weather 
generation, hydrology, soil physics, plant 
science, hydraulics, and erosion mechanics 
(Lane and Nearing 1989). 

WEPP simulates many watershed 
processes to improve the accuracy of pre- 
dictions. Unfortunately, WEPP is still an 
abstraction of reality and uncertainty aris- 
es in model components. Model complex- 
ity and natural variability of the system 
frequently induce uncertainty in predic- 
tions. It is necessary to identify critical pe- 
riods for which the model produces unre- 
alistic responses as the result of errors in 
continuous simulations. Typical questions 
are: Is model error or parameter error de- 
creasing or increasing with time? If error 
diminishes with time, what is the mini- 
mum number of years to obtain reliable 
predictions? The  objective of this study 
was to assess prediction uncertainty for 
three response variables of the 93.13 ver- 
sion of the WEPP model when applied to 
a small semi-arid rangeland watershed. 

Relevant I iterat ure 

Prediction uncertainty is associated 
with a variety of factors including the 
model error, caused by the abstraction of 
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a physical system represented by a set of 
mathematical equations. Model error- 
also known as structural error-arises be- 
cause the governing laws controlling the 
processes are not known precisely. Model 
error depends on the level of aggregation 
of components representing the system. 
Trade-offs exist between model complexi- 
ty, accuracy of parameters, and input data 
(Kirchner 1991). As models become more 
complex, data and parameter require- 
ments usually become greater. Adding 
complexity to a model may improve its 
ability to describe the system’s behavior, 
but it may increase prediction uncertainty. 

Traditionally, model structure is evaluated 
using the following four statistical assump- 
tions about model error: 1) the errors are sta- 
tistically independent of the predictions and 
are identically distributed, 2) the errors are 
statistically independent of each other, 3) the 
error has a zero mean, p; and a finite vari- 
ance, 0’; and 4) the errors are normally dis- 
tributed. If one of these assumptions is vio- 
lated then it is said that the model contains 
structural errors. T h e  experience with 
process-based models has demonstrated that 
errors associated with even optimal parame- 
ter sets are neither zero nor normally distrib- 
uted. The difficulty of testing models using 
traditional statistical schemes results from 
threshold parameters, parameter correlation, 
heteroscedasticity in the residuals, and insen- 
sitive parameters (Beven and Binley 1992). 

Perhaps parameter error has received 
most attention in WEPE Sensitivity analyses 
have shown that small errors in parameters 
can result in large errors in model responses 
(Flanagan and Nearing 1991; and Tis- 
careno-Lopez et al. 1993). Errors due to pa- 
rameters frequently result from measure- 
ment errors and inaccuracy of empirical 
equations that calculate parameters to repre- 
sent the natural variability. Model compo- 
nents intend to represent the watershed be- 
havior under natural or stressed conditions. 
Runoff and erosion calculations depend on 
parameters representing the spatial and tem- 
poral variability. Spatial variability is im- 
posed by changes in soil and vegetation. 
The temporal variability is the effect of cli- 
matic cycles on plant growth. 

Procedure 

&timation of errors in modedpredic- 
tions. Total uncertainty for the WEPP 
model has accounted for two sources of 

Table 1. Statistics of watershed characteristics used for this analysis 

Rock fragments 
Sand 
Clay 
Silt 
Bulk density 
Organic matter 
1/3-Bar soil moisture 
15-Bar soil moisture 
Cation exchange capacity 
Rock cover 
Litter 
Standing biomass 
Saturated hydraulic conductivity 
Interrill erosion parameter 
Rill erosion parameter 
Critical shear stress parameter 

Rainfall depth 
Runoff volume 
Peak runoff 
Sediment yield 

Unit Mean 

Input parameters 
YO 23.6 
YO 62.7 
% 23.0 
YO 14.2 

g cm’3 1.31 
YO 1.67 
YO 23.9 
YO 13.3 

meq 23.6 
YO 28.0 

kg m-2 0.050 

mm hr ’  4.07 
kg s m4 21 6,286.0 

kg m-z 0.10 

s m-’ 0.0071 7 
Pa 1.07 

mm 21.05 
mm 5.87 

mm hr ’  25.07 
kg 184.40 

Observed watershed data 

Std. Dev. 

8.9 
8.7 
7.1 
2.5 
0.09 
0.5 
5.2 
2.9 
8.3 
6.0 
0.028 
0.036 
2.32 

0.001 35 
0.082 

41,814.0 

7.79 
4.68 

20.95 
342.47 

prior distributions of 
correlated variables 

multiple normal 
distribution 

independent parameter 
/ 

distributions of 
model inputs 

conditional of ylx conditional of xly 

the model I WEPP I 

analysis of errors 

Figure 1. Monte Carlo simulation using 
correlated deviates generation for error 
quantification and prediction intervals 
identification 
Note: Where x, y and z represent model imputs, and a’, 
b’, and c’ are the observed data of the a, b and c model 
predicted variables. 

Predihion Error 

mse = variance + biasZ 

+ 
Prediction I nterva Is 

5% predlcbion iknit 

obswved 
95% predktkn limit 

predicted mean 
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uncertainty in predictions: a) model vari- 
ance, by analyzing the variability of model 
responses around the mean of predictions 
caused by parameter variability; and b) 
model bias, by accounting the difference 
between the expected behavior of the 
model when parameters are uncertain and 
observed data. Total uncertainty was as- 
sessed as Mean Square Error (MSE): 

MSE = VARIANCE + BIAS' (1) 

where 

BIAS = (y  - y)* = (observed 
- mean of predictions)' (2) 

VARIANCE = c(f - 7)' /n 
= (predicted - mean of 
predictions)2 /n (3) 

MSE = x(y  - f)I/n 
= (observed - predicted)'/n (4) 

and where y is the observed value, 7 is the 
mean of predictions, j ,  is the predicted 
value and n is the number of observations. 
Since model variance is the result of para- 
meter variability, model variance is con- 
sidered as a result of parameter error. 
Model bias, a measure of model accuracy, 
represents the model's ability to make 
good estimates. It was assumed that ob- 
served da ta ,  inc luding  precipitation 
records, were free of errors for an appro- 
priate assessment of uncertainties. The de- 
cision criterion utilized to include para- 
meters for this study was based on the 
results of a sensitivity analysis previously 
performed (Tiscareno-Lopez et al. 1993). 

Confidence in model predictions. A 
probabilistic assessment of prediction un- 
certainty was calculated using prediction 
intervals in this study. Prediction intervals 
specify the probability that a deterministic 
prediction lies within a range of model 
output (Graybill 1976). Based on prelimi- 
nary model runs under continuous simu- 
lation, the probability distributions of 
model responses are non-normally distrib- 
uted and vary in shape from day to day. 
Prediction intervals were obtained by re- 
jecting the upper and lower 5% of the 
simulations. 

Implementation. Monte Carlo simula- 
tion with correlated variable generation 
was implemented to  produce a large 
number of responses for predicted vari- 
ables as illustrated in Figure 1.  Error 
sources and  prediction intervals were 
identified using observed data of runoff 
volume, peak runoff, and sediment yield 
of K2, a small rangeland watershed locat- 
ed in the Walnut Gulch Experimental 

Runoff Volume (mm) 

Event Number 

Peak Runoff (mm/hr) 
1,000,000 1 

100,000 - g 10,000 - 

= 0.1 - 
0.01 ' I '  ' " ' ' I  ' ' ' ' I  ' ' ' ' 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
Event Number 

Sediment Yield (kg/ha) 

0 . 0 1 ~  ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' I 
- 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
Event Number 

Figure 2. Total error and parameter error by event for runoff volume, peak runoff and 
sediment yield 

Watershed near Tombstone, Arizona. A 
climate file was constructed using the 
records of a meteorological station locat- 
ed in the watershed. T h e  approach is 
summarized as follows: 
1. Soil and vegetation were sampled through- 

out K2 to obtain basic statistics (Table 1). 
2. To generate random deviates of soil char- 

acteristics, a multiple normal distribu- 
tion was used to preserve correlation be- 
tween variables. Model parameters were 
assumed uncorrelated and they were 
generated from univariate distributions. 

3. A set of model inputs was drawn from 
corresponding probability distributions. 
A 14-years continuous simulation was 
performed by entering this set of model 
inputs and climate data. 

4. Model responses for 21 events, for which 
observed data exist, occurring within the 
14-years simulation were saved at the 
end of the simulation. 

5. Steps three and four were repeated for 
1,000 simulations. 

6. Errors were then quantified for runoff 
volume, peak runoff, and sediment yield 
model responses by solving Equation (1) 
for each event after 1,000 simulations 
(n=1,000). 

7. Using probability distributions of model 
responses, prediction intervals were 
identified. 

Results 

Figure 2 shows variations of total error 
and parameter error for model responses 
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Figure 3. Errors by the magnitude of runoff volume, peak runoff and sediment yield 

D 

corresponding to 2 1 rainfall-runoff pro- 
ducing events, chronologically ordered, 
within the 14-years simulation. Model 
bias is the difference between total error 
and parameter error. According to these 
three plots, all errors maintained a uni- 
form spread over time, indicating that er- 
rors do  not increase along the time of 
simulation. However, error propagation 
was detected because the MSE and vari- 
ance increased from runoff volume to sed- 
iment yield. 

To identify heteroscedasticity prob- 
lems-larger events have larger associated 
prediction errors-the magnitude of errors 
was plotted on the magnitude of observed 
runoff volume, peak runoff, and sediment 
yield (Figure 3) .  Errors are uniformly dis- 
tributed for runoff volume, and there is a 

moderate tendency for errors to increase 
for peak runoff. However, errors increase 
significantly for sediment yield predictions. 
All three error types tended to increase for 
large rainfall events and model bias was the 
most contributing to total error. O n  aver- 
age, model bias contributed 45.8, 55.1, 
and 79.6% of total error for predicting 
runoff volume, peak runoff, and sediment 
yield, respectively. A frequent bias in esti- 
mating the sediment yield revealed prob- 
lems in erosion calculations. 

Error propagation from lower to higher 
levels of aggregation was identified. This 
effect became noticeable when a 14-year 
simulation was performed with model in- 
puts at their mean value of sample (Table 
1) and initiating the model with calibrat- 
ed parameters (Tiscareno-Lopez 1994). 

5 10 15 20 -0 
observed 

peak runoff (mdhr) 
1 00 

U 

0 
3 80 

60 
z 
E 

40 

20 

0 

10,000 

1,000 

I00  
0 

.- Q 
U 
2 10 n 

1 

r = 0.703 
S.B. of pred. = 11.27 

20 40 60 80 1 
observed 

sediment yield ( m a )  

r = 0.393 
8.8. Of pred. = 43.2 

I 10 100 1,000 10 

observed 

Figure 4. Observed and predicted vari- 
ables with parameters at calibration 

Figure 4 illustrates one-to-one scatter- 
grams of model responses. Events along 
the 45" line indicate a perfect fit. The  
numbers inside the graph correspond to 
the events. Runoff volume is scattered 
along the 45" line, showing that WEPP 
behaves satisfactorily to estimate infiltra- 
tion variables related with the estimation 
of runoff volume. Peak runoff was under 
predicted for some events, however the 
sediment yield plot shows the highest dis- 
persion about the 45" line. A cluster of 
events in the lower part of the scattergram 
revealed sediment yield under prediction. 
The accumulation of error is reflected in 
a reduction of the coefficient of correla- 
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Event Number 

I I I I 
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Event Number 

Event Number 

Event Number 

95% prediction limit observed simulated 
predicted mean t 5% prediction limit 

0 

Figure 5. Prediction intervals of runoff volume, peak runoff and sediment yield 

tion from 0.74 on runoff volume to 0.39 
on sediment yield estimates. Note that 
runoff events resulting without erosion 
response were not included in the sedi- 
ment yield plot since logarithm of zero 
does not exist. 

Figure 5 shows prediction intervals of 
model responses. The  top plot shows the 
magnitude of the rainfall events. T h e  
runoff volume plot indicates that WEPP 
can make acceptable predictions in con- 
tinuous simulations since most of the 
actual observations fell within the 90% 
prediction intervals. The  empty circles 
represent model predictions when the 
model was run with calibrated parame- 

ters. For peak runoff, 14 of the 21 ob- 
served events fell within the range of the 
prediction. Prediction intervals for sedi- 
ment yield could not be delineated due 
to large errors. T h e  reduction of ob- 
served events within the 90% prediction 
intervals is attributed to error propaga- 
tion between components in the model. 

It is important to mention that this 
and  other analyses helped to  identify 
that problems in erosion calculations re- 
sulted from interrill erosion under pre- 
diction. Then, a sediment transport fac- 
tor for interrill erosion was included in 
latter versions of the model to improve 
predictions. 

Conclusions 

Based on analyses to estimate uncertain- 
ties in the WEPP model, it is possible to 
conclude the following: (1) errors main- 
tained a uniform spread during continu- 
ous simulations, never increasing or de- 
creasing along the time of simulation. This 
suggests there is not a minimum number 
of years of simulation required to diminish 
prediction error; (2) Problems of lack of 
homoscedasticity were observed, the 
largest errors associated to the largest rain- 
fall events. This is more evident for com- 
ponents of higher levels of aggregation 
such as peak runoff and sediment yield; 
(3) Prediction intervals showed that 
WEPP simulates acceptable runoff volume 
responses. Most of the peak runoff obser- 
vations were comprised within the range 
of predictions. Because of the large error 
in estimating sediment yield, most of the 
sediment yield observations rarely were in- 
cluded inside prediction intervals. This 
was largely attributed to interrill erosion 
under prediction. 
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